Hello,
I'm trying to fit a model that turns out to result in fitness function with loads of local minima, and simple gradient methods don't seem to come up with any good solutions (and I know from simpler models fit to the same problem that good solutions have to exist).
After doing some reading, it seems my only option are various stochastic methods such as evolutionary method or monte-carlo optimizations. My question is what are the state of the art optimization algorithms that are know to handle many local optima well. Ideally, I would like to combine the stochastic search with the gradient so that the fact that I have the 1st and 2nd order gradient of the model is exploited.
Many thanks for help, Jan